logo BDSP

Base documentaire

  1. In situ inactivation of animal viruses and a coliphage in nonaerated liquid and semiliquid animal wastes.

    Article - En anglais

    The persistence of five animal viruses, representing picorna-rota-parvo-adeno-and herpesviruses, and the coliphage f2 was determined in the field by exposing the viruses to different animal wastes and by adopting an established filter sandwich technique.

    This technique allows us to copy the natural state of viruses in the environment, where adsorption onto or incorporation into suspended solids may prolong virus survival.

    Using filter sandwiches either equipped with porous (15 nm in diameter) or poreless polycarbonate (PC) membranes, it was possible to differentiate between overall virus inactivation and the effect of virucidal agents that act through poreless PC membranes.

    Depending on ambient temperature, pH, and type of animal waste, values for time, in days, required for a 90% reduction of virus titer varied widely, ranging from less than 1 week for herpesvirus to more than 6 months for rotavirus.

    Virus inactivation progressed substantially faster in liquid cattle manure, a mixture of urine and water (pH 78.0), than in semiliquid wastes that consisted of mixtures of feces, urine, water, and bedding materials (pH<8.0).

    Hitherto unidentified virucidal agents that permeate poreless PC membranes contributed substantially to the overall inactivation.

    Mots-clés Pascal : Déchet animal, Virus, Coliphage, Inactivation, In situ, Facteur milieu, Cinétique, Antiviral, Bactériophage

    Mots-clés Pascal anglais : Animal waste, Virus, Coliphage, Inactivation, In situ, Environmental factor, Kinetics, Antiviral, Phage

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 95-0186063

    Code Inist : 002B30A02A. Création : 09/06/1995.