logo BDSP

Base documentaire


Votre avis nous intéresse

Le réseau BDSP met en oeuvre un projet d'innovation et d'amélioration de ses services, dans le souci constant de proposer des contenus de qualité adaptés aux besoins des utilisateurs.

Identifier de nouvelles sources de financements est la condition nécessaire pour assurer la poursuite et la pérennité de cet outil unique qu'est la BDSP, tout en le faisant évoluer.

Pour définir un nouveau modèle économique, nous avons besoin de votre avis : merci de répondre à notre enquête (temps estimé : 5 minutes).

Participer maintenant
Participer plus tard J'ai déjà participé

  1. Survival analysis : caveats and pitfalls.

    Article - En anglais

    Background 

    Survival analysis in clinical studies is important to assess the effectiveness of a given treatment and to understand the effect of various disease characteristics.

    A number of methods exist to estimate the survival rate and its standard error.

    However, one cannot be certain that these methods have been handled appropriately.

    The widespread use of computers has made it possible to carry out survival analysis without expert guidance, but using inappropriate methods can give rise to erroneous conclusions.

    The majority of the biomedical journals now recommend that a statistical review of each manuscript should be carried out by an experienced bio-statistician, in addition to obtaining expert referees'comments on the article.

    The problem is compounded in papers from third-world countries where bio-statisticians may not be available in all institutions to guide clinicians as to the selection of proper techniques.

    Methods 

    The present paper deals with the various techniques of survival analysis and their interpretation, using a modal data set of malignant upper-aerodigestive tract melanoma patients treated in the Regional Cancer Centre, Trivandrum since 1982.

    Results 

    The Kaplan-Meier method was found to be the most suitable for survival analysis.

    The median survival time is a better method of summarizing data than the mean. (...)

    Mots-clés Pascal : Analyse statistique, Survie, Méthode statistique, Epidémiologie, Méthodologie, Homme, Etude comparative

    Mots-clés Pascal anglais : Statistical analysis, Survival, Statistical method, Epidemiology, Methodology, Human, Comparative study

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 99-0329749

    Code Inist : 002B30A01A1. Création : 16/11/1999.