logo BDSP

Base documentaire


  1. Development of the simulation model InPest for prediction of the indoor behavior of pesticides.

    Article, Communication - En anglais

    International symposia on "Engineering Solutions to Indoor Air Quality Problems". Research Triangle Park, NC, USA, 1997/07.

    The objective was to develop a computer software package (to be registered as InPest) that runs under Microsoft Excel on a personal computer to help in the risk assessment of indoor-use pesticides for both applicators and indoor occupants for various methods of application including space spraying, electric vaporizing, broadcast spraying, and residual spraying.

    For space spraying, the movement of the pesticide in a sprayed room including droplet settlement, permeation into the floor, degradation, transference, and discharge by ventilation were described as precisely as possible by various physicochemical equations.

    The equations thus obtained were then incorporated into the Fugacity model (Level IV).

    When pesticide information regarding molecular weight, vapor pressure, water solubility, and octanol/water partition coefficient is available, InPest is able to simulate the time-dependent concentrations of the pesticide in the air and residual amounts on floor, wall, and ceiling materials under various conditions.

    Simulation data indicate that the predicted behavior of pesticides fully agrees with the measured data.

    Based on the predicted concentrations in the air and amounts of residue on the floor, the levels of exposure to room occupants via inhalation, dermal, or oral intake can be computed and compared with the mammalian toxicological data.

    Thus, InPest is a powerful tool for evaluating the safety of indoor-use pesticides with regard to human health.

    Mots-clés Pascal : Pesticide, Pulvérisation, Pollution intérieur, Qualité air, Teneur air ambiant, Devenir polluant, Analyse risque, Simulation numérique, Logiciel, Logiciel InPest

    Mots-clés Pascal anglais : Pesticides, Spraying, Indoor pollution, Air quality, Ambient air concentration, Pollutant behavior, Risk analysis, Numerical simulation, Software

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 99-0023825

    Code Inist : 001D16C06. Création : 31/05/1999.