logo BDSP

Base documentaire


Votre avis nous intéresse

Le réseau BDSP met en oeuvre un projet d'innovation et d'amélioration de ses services, dans le souci constant de proposer des contenus de qualité adaptés aux besoins des utilisateurs.

Identifier de nouvelles sources de financements est la condition nécessaire pour assurer la poursuite et la pérennité de cet outil unique qu'est la BDSP, tout en le faisant évoluer.

Pour définir un nouveau modèle économique, nous avons besoin de votre avis : merci de répondre à notre enquête (temps estimé : 5 minutes).

Participer maintenant
Participer plus tard J'ai déjà participé

  1. The use of artificial neural networks methodology in the assessment of "vulnerability" to heroin use among army corps soldiers : A preliminary study of 170 cases inside the Military Hospital of Legal Medicine of Verona.

    Article - En anglais

    This article describes a preliminary study of screening/diagnostic instruments for prediction for large-scale application in the military field at the Neuropsychiatric Department of the Military Hospital of Legal Medicine of Verona and for the prevention of self-destructive behaviors, particularly through the use of drugs. 170 subjects divided into three subsamples were examined.

    The first subsample was characterized by a strong tendency towards normalcy, the second by a strong tendency towards pathology, and the third by a great variety of expressions of psychological and social problems, which were not necessarily related to drug use.

    These subjects were administered a questionnaire designed according to Squashing Theory principles (Buscema, 1994a).

    Answers were processed by an Artificial Neural Network created by Semeion in Rome (Buscema, 1996) and were compared with a standard clinical psychiatric assessment report and with the results of psychodiagnostic tests.

    Results document ANNs'remarkable ability to recognize subjects with declared in exordium and « at risk » pathological behaviors.

    Blind results on learning and trial samples show a very high predictive capacity (over 90%). A comparison with the examined subjects'clinical report and the results of the first follow-up also document very high agreements. (...)

    Mots-clés Pascal : Analyse statistique, Réseau neuronal, Vulnérabilité, Toxicomanie, Utilisation, Diamorphine, Facteur risque, Prévention, Italie, Europe, Armée, Homme

    Mots-clés Pascal anglais : Statistical analysis, Neural network, Vulnerability, Drug addiction, Use, Heroin, Risk factor, Prevention, Italy, Europe, Army, Human

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 98-0309205

    Code Inist : 002B18C05A. Création : 27/11/1998.