logo BDSP

Base documentaire


Votre avis nous intéresse

Le réseau BDSP met en oeuvre un projet d'innovation et d'amélioration de ses services, dans le souci constant de proposer des contenus de qualité adaptés aux besoins des utilisateurs.

Identifier de nouvelles sources de financements est la condition nécessaire pour assurer la poursuite et la pérennité de cet outil unique qu'est la BDSP, tout en le faisant évoluer.

Pour définir un nouveau modèle économique, nous avons besoin de votre avis : merci de répondre à notre enquête (temps estimé : 5 minutes).

Participer maintenant
Participer plus tard J'ai déjà participé

  1. Development of a clinical prediction model for an ordinal outcome : The World Health Organization Multicentre Study of clinical signs and etiological agents of pneumonia, sepsis and meningitis in young infants.

    Article - En anglais

    This paper describes the methodologies used to develop a prediction model to assist health workers in developing countries in facing one of the most difficult health problems in all parts of the world : the presentation of an acutely ill young infant.

    Statistical approaches for developing the clinical prediction model faced at least two major difficulties.

    First, the number of predictor variables, especially clinical signs and symptoms, is very large, necessitating the use of data reduction techniques that are blinded to the outcome.

    Second, there is no uniquely accepted continuous outcome measure or final binary diagnostic criterion.

    For example, the diagnosis of neonatal sepsis is ill-defined.

    Clinical decision makers must identify infants likely to have positive cultures as well as to grade the severity of illness.

    In the WHO/ARI Young Infant Multicentre Study we have found an ordinal outcome scale made up of a mixture of laboratory and diagnostic markers to have several clinical advantages as well as to increase the power of tests for risk factors.

    Such a mixed ordinal scale does present statistical challenges because it may violate constant slope assumptions of ordinal regression models.

    In this paper we develop and validate an ordinal predictive model after choosing a data reduction technique.

    We show how ordinality of the outcome is checked against each predictor. (...)

    Mots-clés Pascal : Enfant, Homme, Prédiction, Modèle statistique, Analyse ordinale, Méthodologie, Estimation paramètre, Etude multicentrique, Etiologie, Diagnostic, Facteur risque

    Mots-clés Pascal anglais : Child, Human, Prediction, Statistical model, Ordinal analysis, Methodology, Parameter estimation, Multicenter study, Etiology, Diagnosis, Risk factor

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 98-0266080

    Code Inist : 002B28F. Création : 11/09/1998.