logo BDSP

Base documentaire


Votre avis nous intéresse

Le réseau BDSP met en oeuvre un projet d'innovation et d'amélioration de ses services, dans le souci constant de proposer des contenus de qualité adaptés aux besoins des utilisateurs.

Identifier de nouvelles sources de financements est la condition nécessaire pour assurer la poursuite et la pérennité de cet outil unique qu'est la BDSP, tout en le faisant évoluer.

Pour définir un nouveau modèle économique, nous avons besoin de votre avis : merci de répondre à notre enquête (temps estimé : 5 minutes).

Participer maintenant
Participer plus tard J'ai déjà participé

  1. Prevalence odds ratio or prevalence ratio in the analysis of cross sectional data : what is to be done ?

    Article - En anglais

    Objectives-To review the appropriateness of the prevalence odds ratio (POR) and the prevalence ratio (PR) as effect measures in the analysis of cross sectional data and to evaluate different models for the multivariate estimation of the PR.

    Methods-A system of linear differential equations corresponding to a dynamic model of a cohort with a chronic disease was developed.

    At any point in time, a cross sectional analysis of the people then in the cohort provided a prevalence based measure of the effect of exposure on disease.

    This formed the basis for exploring the relations between the POR, the PR, and the incidence rate ratio (IRR).

    Examples illustrate relations for various IRRs, prevalences, and differential exodus rates.

    Multivariate point and interval estimation of the PR by logistic regression is illustrated and compared with the results from proportional hazards regression (PH) and generalised linear modelling (GLM).

    Results

    The POR is difficult to interpret without making restrictive assumptions and the POR and PR may lead to different conclusions with regard to confounding and effect modification.

    The PR is always conservative relative to the IRR and, if PR>1, the POR is always>PR.

    In a fixed cohort and with an adverse exposure, the POR is always =IRR, but in a dynamic cohort with sufficient underlying follow up the POR may overestimate or underestimate the IRR, depending on the duration of follow up. (...)

    Mots-clés Pascal : Etude transversale, Maladie, Chronique, Homme, Régression logistique, Prévalence, Incidence, Etude statistique

    Mots-clés Pascal anglais : Cross sectional study, Disease, Chronic, Human, Logistic regression, Prevalence, Incidence, Statistical study

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 98-0232455

    Code Inist : 002B30A01A1. Création : 11/09/1998.