logo BDSP

Base documentaire


  1. Performance of N95 respirators : Filtration efficiency for airborne microbial and inert particles.

    Article - En anglais

    In 1995 the National Institute for Occupational Safety and Health issued new regulations for nonpowered particulate respirators (42 CFR Part 84).

    A new filter certification system also was created.

    Among the new particulate respirators that have entered the market, the N95 respirator is the most commonly used in industrial and health care environments.

    The filtration efficiencies of unloaded N95 particulate respirators have been compared with those of dust/mist (DM) and dust/fume/mist (DFM) respirators certified under the former regulations (30 CFR Part 11).

    Through laboratory tests with NaCl certification aerosols and measurements with particle-size spectrometers, N95 respirators were found to have higher filtration efficiencies than DM and DFM respirators and noncertified surgical masks.

    N95 respirators made by different companies were found to have different filtration efficiencies for the most penetrating particle size (0.1 to 0.3 mum), but all were at least 95% efficient at that size for NaCl particles.

    Above the most penetrating particle size the filtration efficiency increases with size ; it reaches approximately 99.5% or higher at about 0.75 mum.

    Tests with bacteria of size and shape similar to Mycobacterium tuberculosis also showed filtration efficiencies of 99.5% or higher.

    Experimental data were used to calculate the aerosol mass concentrations inside the respirator when worn in representative work environments. (...)

    Mots-clés Pascal : Exposition professionnelle, Protection personne, Protection individuelle, Masque protection, Respirateur, Particule inerte, Microorganisme, Mycobacterium tuberculosis, Mycobacteriaceae, Mycobacteriales, Actinomycetes, Bactérie, Performance

    Mots-clés Pascal anglais : Occupational exposure, Person protection, Individual safety equipment, Protective mask, Respirators, Inert particle, Microorganism, Mycobacterium tuberculosis, Mycobacteriaceae, Mycobacteriales, Actinomycetes, Bacteria, Performance

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 98-0163437

    Code Inist : 001D16C06. Création : 21/07/1998.