logo BDSP

Base documentaire

  1. Neural network and linear regression models in residency selection.

    Article - En anglais

    For many years, multiple linear regression models have been used at a residency program to generate preliminary rank lists of residency applicants.

    These lists are then used by the admissions committee as an aid in developing a final ranking to submit to the National Residency Match Program (NRMP).

    A study was undertaken to compare predictions made using linear regression with those generated by a newer technique, an artificial neural network.

    A prospective cohort design was used.

    Seventy-four applicants to an emergency medicine program were evaluated by faculty and resident interviewers with regard to medical school grades, autobiography, interviews, letters of recommendation, and National Board scores.

    Normalization of these scores (by linear transformation of interviewer means) was used to correct for differences among interviewers.

    Multivariate linear regression and neural network models were developed using data from the previous 5 years'applicants.

    These models were used to forecast provisional rank orderings of the candidates.

    These rankings were combined into a single hybrid list that was used by the admissions committee as the starting point for development of the final rank list by consensus.

    Each model's predictions were tested for goodness of fit against the final NRMP rank using Wilks'test.

    Using the final submitted NRMP rank order as the dependent variable, the neural network yielded a correlation coefficient of 0.77 and an R2 of 59.4%. (...)

    Mots-clés Pascal : Réseau neuronal, Régression linéaire, Modèle statistique, Urgence, Médecine, Résident, Sélection professionnelle, Evaluation professionnelle, Homme, Etats Unis, Amérique du Nord, Amérique

    Mots-clés Pascal anglais : Neural network, Linear regression, Statistical model, Emergency, Medicine, Resident, Occupational selection, Professional evaluation, Human, United States, North America, America

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 97-0417175

    Code Inist : 002B30A05. Création : 19/12/1997.