logo BDSP

Base documentaire


Votre avis nous intéresse

Le réseau BDSP met en oeuvre un projet d'innovation et d'amélioration de ses services, dans le souci constant de proposer des contenus de qualité adaptés aux besoins des utilisateurs.

Identifier de nouvelles sources de financements est la condition nécessaire pour assurer la poursuite et la pérennité de cet outil unique qu'est la BDSP, tout en le faisant évoluer.

Pour définir un nouveau modèle économique, nous avons besoin de votre avis : merci de répondre à notre enquête (temps estimé : 5 minutes).

Participer maintenant
Participer plus tard J'ai déjà participé

  1. Fulltext. Misclassification model for person-time analysis of automated medical care databases.

    Article - En anglais

    Fulltext.

    A misclassification model is presented for the assessment of bias in rate ratios estimated by person-time analyses of automated medical care databases.

    The model allows for misclassification of events and person-time and applies to both differential and nondifferential errors.

    The focus is on medical care exposures that occur at discrete points in time (e.g., vaccinations) and on adverse events that are closely associated in time.

    Bias corrections for rate ratios and binomial tests of equality of event rates during exposed and unexposed person-time are developed and illustrated.

    For nondifferential under-or over-ascertainment of events, the observed rate ratio (r) is unbiased at the null hypothesis (true rate ratio R=1), negatively biased when R>1, and positively biased when R<1 (i.e., biased toward the null).

    Differential under-ascertainment of unexposed events and differential over-ascertainment of exposed events positively bias r when R=1. Differential event sensitivities cause larger biases in rate ratios than differential false event rates.

    False positive exposures bias observed event rate ratios more than false negative exposures.

    Biases are small when event sensitivities are nondifferential and when less than 10% of database exposures and events are false.

    The usefulness of the model for critical sensitivity analysis is illustrated by an example from a linked database study of childhood vaccine safety. (...)

    Mots-clés Pascal : Base donnée, Informatique, Modèle statistique, Vaccination, Médicament, Toxicité, Complication, Qualité, Information, Epidémiologie, Biais

    Mots-clés Pascal anglais : Database, Computer science, Statistical model, Vaccination, Drug, Toxicity, Complication, Quality, Information, Epidemiology, Bias

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 96-0459836

    Code Inist : 002B30A01A1. Création : 10/04/1997.