logo BDSP

Base documentaire


Votre avis nous intéresse

Le réseau BDSP met en oeuvre un projet d'innovation et d'amélioration de ses services, dans le souci constant de proposer des contenus de qualité adaptés aux besoins des utilisateurs.

Identifier de nouvelles sources de financements est la condition nécessaire pour assurer la poursuite et la pérennité de cet outil unique qu'est la BDSP, tout en le faisant évoluer.

Pour définir un nouveau modèle économique, nous avons besoin de votre avis : merci de répondre à notre enquête (temps estimé : 5 minutes).

Participer maintenant
Participer plus tard J'ai déjà participé

  1. Neural network for transportation safety modeling.

    Article - En anglais

    Accidents serve as an operational measure of marine safety, and specifically the safety of vessels, crews, and cargoes.

    The ability to accurately predict the type of vessel accident with such input variables as time, location, weather, river stage, and traffic could significantly reduce marine casualties by alerting port authorities and navigation groups as to the likelihood of a specific kind of casualty.

    In this paper, three models were developed to predict vessel accidents on the lower Mississippi River.

    These models are a neural network, multiple discriminant analysis and logistic regression.

    The predictive capability for vessel accidents of a neural network is compared with multiple discriminant analysis and logistic regression.

    The percent of grouped cases correctly classified is 80% (36 of the 45 cases in the testing set) for the neural network, if nonclassified cases are treated as incorrectly classified by neural network.

    The percent of grouped cases correctly classified by this network is 90% (36 of 40 cases) if nonclassified cases are excluded from the calculation.

    Discriminant analysis and logistic regression were able to correctly classify only 53% and 56% respectively, of accident cases into three casualty groups : collisions, rammings, or groundings.

    Mots-clés Pascal : Théorie, Facteur sécurité, Prévention accident, Vaisseau naval, Modèle mathématique, Réseau neuronal, Logistique, Prévision, Transport voie eau

    Mots-clés Pascal anglais : Transportation safety, Theory, Safety factor, Accident prevention, Naval vessels, Mathematical models, Neural networks, Logistics, Forecasting, Waterway transportation

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 96-0124775

    Code Inist : 001D15E. Création : 199608.