logo BDSP

Base documentaire


Votre avis nous intéresse

Le réseau BDSP met en oeuvre un projet d'innovation et d'amélioration de ses services, dans le souci constant de proposer des contenus de qualité adaptés aux besoins des utilisateurs.

Identifier de nouvelles sources de financements est la condition nécessaire pour assurer la poursuite et la pérennité de cet outil unique qu'est la BDSP, tout en le faisant évoluer.

Pour définir un nouveau modèle économique, nous avons besoin de votre avis : merci de répondre à notre enquête (temps estimé : 5 minutes).

Participer maintenant
Participer plus tard J'ai déjà participé

  1. The SUPPORT prognostic model : objective estimates of survival for seriously ill hospitalized adults.

    Article - En anglais

    Objective 

    To develop and validate a prognostic model that estimates survival over a 180-day period for seriously ill hospitalized adults (phase I of SUPPORT [Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments]) and to compare this model's predictions with those of an existing prognostic system and with physicians'independent estimates (SUPPORT phase II)..

    Measurements 

    A survival model was developed using the following predictor variables : diagnosis, age, number of days in the hospital before study entry, presence of cancer, neurologic function, and 11 physiologic measures recorded on day 3 after study entry.

    Physicians were interviewed on day 3. Patients were followed for survival for 180 days after study entry..

    Results 

    The area under the receiver-operating characteristics (ROC) curve for prediction of surviving 180 days was 0.79 in phase I, 0.78 in the phase II independent validation, and 0.78 when the acute physiology score from the APACHE (Acute Physiology, Age, Chronic Health Evaluation) III prognostic scoring system was substituted for the SUPPORT physiology socre.

    For phase II patients, the SUPPORT model had equal discrimination and slightly improved calibration compared with physicians'estimates improved both predictive accuracy (ROC curve area=0.82) and the ability to identify patients with high probabilities of survival or death.

    Mots-clés Pascal : Maladie, Grave, Hospitalisation, Modèle, Survie, Pronostic, Evolution, Homme, Long terme

    Mots-clés Pascal anglais : Disease, Severe, Hospitalization, Models, Survival, Prognosis, Evolution, Human, Long term

    Logo du centre Notice produite par :
    Inist-CNRS - Institut de l'Information Scientifique et Technique

    Cote : 95-0339108

    Code Inist : 002B30A01A2. Création : 01/03/1996.